108 research outputs found

    Cost-effective aperture arrays for SKA Phase 1: single or dual-band?

    Full text link
    An important design decision for the first phase of the Square Kilometre Array is whether the low frequency component (SKA1-low) should be implemented as a single or dual-band aperture array; that is, using one or two antenna element designs to observe the 70-450 MHz frequency band. This memo uses an elementary parametric analysis to make a quantitative, first-order cost comparison of representative implementations of a single and dual-band system, chosen for comparable performance characteristics. A direct comparison of the SKA1-low station costs reveals that those costs are similar, although the uncertainties are high. The cost impact on the broader telescope system varies: the deployment and site preparation costs are higher for the dual-band array, but the digital signal processing costs are higher for the single-band array. This parametric analysis also shows that a first stage of analogue tile beamforming, as opposed to only station-level, all-digital beamforming, has the potential to significantly reduce the cost of the SKA1-low stations. However, tile beamforming can limit flexibility and performance, principally in terms of reducing accessible field of view. We examine the cost impacts in the context of scientific performance, for which the spacing and intra-station layout of the antenna elements are important derived parameters. We discuss the implications of the many possible intra-station signal transport and processing architectures and consider areas where future work could improve the accuracy of SKA1-low costing.Comment: 64 pages, 23 figures, submitted to the SKA Memo serie

    A genomic approach to understanding the cause and effect of annual ryegrass toxicity

    Full text link
    Annual Ryegrass Toxicity (ARGT) is a potentially lethal disease affecting livestock grazing on pastures or consuming fodder that include annual ryegrass (Lolium rigidum) contaminated with corynetoxins. The corynetoxins (CTs), among the most lethal toxins produced in nature, are produced by the bacterium Rathayibacter toxicus that uses a nematode vector to attach to and infect the seedheads of L.rigidum. There is little known of the factors that control toxin production. Several studies have speculated that a bacteriophage specific to R.toxicus may be implicated in CT production. We have developed a PCR-based assay to test for both bacterium and phage in ryegrass material and results indicate that there is a correlation between phage and bacterial presence in all toxic ryegrass samples tested so far. This PCR-based technique may ultimately allow for a rapid, high-throughput screening assay to identify potentially toxic pastures and feed in the field. Currently, ~80% of the 45 Kb genome has been sequenced an investigation to further elucidate its potential role in toxin production.Furthermore, specific alterations in gene expression as a result of exposure to CTs or the closely related tunicamycins (TMs), which are commercially available and considered biologically indistinguishable from CTs, will be evaluated for use as biomarkers of exposure. The effects of both toxins will be analysed in vitro using a rat hepatocyte cell line and screened on a low-density DNA micro array &ldquo;CT-Chip&rdquo; that contains &lt;100 selected rat hepatic genes. The results are expected to further define the bioequivalence of CTs and TMs and to identify levels of exposure that are related to specific toxic effects or have no adverse effect on livestock.<br /

    Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    Get PDF
    15 pages, 11 figures. Accepted for publication in PASA. © Astronomical Society of Australia 2017The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science program, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programs for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky MWA (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20 % in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 x 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200 - 231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.Peer reviewedFinal Accepted Versio

    The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

    Get PDF
    We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.Comment: accepted for publication in PAS

    Pulsars with the Australian Square Kilometre Array Pathfinder

    Full text link
    The Australian Square Kilometre Array Pathfinder (ASKAP) is a 36-element array with a 30-square-degree field of view being built at the proposed SKA site in Western Australia. We are conducting a Design Study for pulsar observations with ASKAP, planning both timing and search observations. We provide an overview of the ASKAP telescope and an update on pulsar-related progress.Comment: To appear in proceedings of "Radio Pulsars: An astrophysical key to unlock the secrets of the Universe

    The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies

    Full text link
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.Comment: Submitted to PASA. 11 figures, 2 table

    Exogenous spatial precuing reliably modulates object processing but not object substitution masking

    Get PDF
    Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance

    Beam-forming errors in Murchison Widefield array phased array antennas and their effects on epoch of reionization science

    Get PDF
    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the "wedge"). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the "EOR window"), showing that foreground avoidance remains a viable strategy
    corecore